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Note 

On the Numerical Evaluation of the Ordinary Bessel Function of 
the Second Kind 

1. INTRODUCTION 

1.1. Definitions and Relevant Properties 

The ordinary Bessel function of the first kind 

(l-1) 

and the ordinary Bessel function of the second kind 

Y,(z) = [cos v7r J”(z) - J-,(z)]/sin vi7 w 

are two linearly independent solutions of the difference equation 

A+1 - wz>fy +.L1 = 0. (1.3) 

This equation can be used to compute Y,,, for n = 2, 3,... when Y,, and Y,,,, are 
given. In the forward direction the recurrence formula (1.3) for Y, is numerically 
stable, whereas it is unstable for J, (see Gautschi [I I). 

The ordinary Bessel functions of the third kind are the Hankel functions 

Hy”‘(z) = J,,(z) + iY,(z), H,?)(z) = J”(z) - iY,(z). (1.4) 

Important for the representation of the Hankel functions for large ) z 1 are the 
functions P(v, z) and Q(v, z) defined by 

Hr*2)(z) = [2/(7rz)J1i2 e*lx[P(y, z) & iQ(v, z)], (1.5) 

where the + sign is used for H,!‘), the - sign is used for Hj2’ and 

x = z - 7r(2V + 1)/4. (1.6) 

For large 1 z ( , P and Q are slowly varying and the oscillatory behavior of Hy(l) and 
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HJ’) is contained in the exponential function in (1.5). From (1.4) and (I .5) we 
obtain 

Y,(z) = [~/(QTz)]~‘” [P(v, z) sin x + Q(v, z) cos x] 

J”(z) = [2/(7fz)]l~” [P(v, z) cos x - Q(v, z) sin x]. 
(1.7) 

Again, the oscillatory behavior of J, and Y, is fully described by the circular 
functions in (1.7). 

The connection between the ordinary Bessel functions and the modified Bessel 
functions follows from 

ff;l)(z) = -2i,-1e-1’Pi/zKV(ze-i”ie) (-4~ < arg z < .rr), 

fftZ)(z) = 2i,-le""ij2KV(zeiR/2) (-n < arg z < $r). (1.8) 

From the Wronskian 

J”,,(Z) Y”(Z) - J”!Z) Y,+,(z) = w774 

and (1.7) it easily follows that 

1.2. Contents of the Paper 

We give algorithms for the computation of Y, and Y,,, and we use the methods 
of our previous paper on the computation of K, and Ky+1 (see Temme [6]). Our 
results in [6] can be used for complex values of z. Here we give the explicit results 
for Y, and Y,,+r and these results follow immediately from [6] by using (1.8). 

For the computation of J, the reader is referred to Gautschi [I], where an 
algorithm is given for the computation of JV+n(z), n = 0, I, 2,..., N. See also 
Gautschi [2]. In Luke [4] rational approximations for J, and Y, are given based 
on Pad&representations for large I z 1 . In Luke [5] a double series of Chebyshev 
polynomials and values of the coefficients are given for both Y, J, for z > 5. In 
Goldstein and Thaler [3] the computation of Y,, is based on series expansions in 
ordinary Bessel functions of the first kind, but the treatment of small ( v I-values 
is not satisfactory. 

2. THE COMPUTATION FOR SMALL ) z 1 

In order to obtain a more symmetric representation in (1.2) we write 

cos ~77 J”(z) - J-,(z) = J,(z) - J-,(z) - 2 sin2(v7i-/2) J,(z). (2.1) 
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Furthermore we introduce the following notation 

f& = (-z74)“/k!, 
pr = (v/sin v7r) (z/2)-v/r(k + 1 - v), 
qr = (v/sin WT) (z/2)y/r(k + 1 + v), 

fk = (Pk - aJ/~~ 

g, = fk + 2v-l sin2(vn/2) qk , 

ht= -kgk +pk, 

where k = 0, l,.... We have for k = 1, 2,... the recurrence relations 

p/s = p,-,l(k - 4 qk = qr-A(k + 4 

A = (&L-l + PL-l + qdl(k2 - v”). 

Substitution of (1.1) in (1.2) and using (2.1) yields 

Y”(Z) = - f Ck gp . 
B=O 

Considering (2.1) with v replaced by v + 1 and using (1.3) we have 

codv + 1) n .&+1(z) - J-,-,(z) 
= -[Jv+l(z) - J-,+I(4l + (244 J-,(z) + 2 sin2W2) .tp+I(z). 

We obtain by substitution of (1.1) 

(2.2) 

(2.3) 

As in [6], f. can be represented in such a way that it can be computed with a 
satisfactorily small relative error. 

For small values of 1 z 1 the series in (2.2) and (2.3) converge rapidly. But cancel- 
lation may occur in summing the series numerically. A strict error analysis, as for 
the modified Bessel function, can not easily be given, but from numerical experi- 
ments it turns out that for 1 z I < 3 the computation is stable. 

3. THE COMPUTATION FOR 1 z 1 2 3 

For I z I 3 3 we compute P(v, z), P(v + 1, z), Q(v, z) and Q(v + 1, z), by using 
the functions k,(z) introduced in our previous paper [6]. For K, and K,,, we needed 
ko(z) and k,(z). From (1.8) it turns out that for the P- and Q-functions the func- 
tions k,(fiz) and kl( &iz) can be used. The application of the method in [6] is 
straightforward. However, the determination of the starting index N for the Miller 
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algorithm caused some trouble, since our error analysis in [6] was based on the 
case of real variables. But trying out the results of [6] for the P- and Q-functions 
we noticed that the determination of the starting index N can indeed be based upon 
the estimations given in [6]. 

4. ALGOL 60 PROCEDURES 

The algorithms for the computation of Y,(z) and Y,+,(z) are given as an ALGOL 
60 procedure for the case of real values of v and z, z > 0. For convenience we 
write v = a and z = x. 

The procedure bessya computes for x > 0 and a s R the functions Y,(x) and 
Y,+&); bessya calls for three nonlocal procedures sinh, recip gamma, and 
besspqa. For the text of sinh, and recip gamma the reader is referred to [6]. In 
besspqa the functions P(a, x), P(u + 1, x), Q(u, X) and Q(a + 1, x) are computed. 
We supply besspqa as a separate procedure since it can also be used for the com- 
putation of the Bessel functions J,(x) and J,+,(x) (see (1.7)). In bessya the procedure 
besspqa is called for x > 3 and / a I < 5, but the algorithm in besspqa converges 
for all x and a (x > 0). It is recommended, however, to take x > max([ a I , 3). 
For ) a ) > x the recurrence relations 

P(a + 1, x) = P(a - 1, x) - 2u/x Q(a, x) 

Q(a + Lx) = Q(a - Lx) + 24x P(a, 4 

can be used. These relations are valid for real a and x. They can be derived by 
substitution of (1.5) in (1.3). However, for 1 a 1 + 1 > x, computation of J,(x) and 
J,+,(x) by using (1.7) will cause a loss of correct significant digits. 

The precision in the procedures bessya and besspqa can be controlled by using 
the variable eps. For besspqu its entry value corresponds to the desired relative 
accuracy in pa, pa 1, qu and qa 1. Also in bessya it corresponds to relative accuracy, 
except in the neighborhoods of zeros of Y,(x) or Y,+l(x). In that case ya or ya 1 are 
given with absolute accuracy eps. 

The procedures bessya and besspqa were tested on the CD CYBER 73 of SARA, 
Amsterdam. For a = 0,0.2,0.4, x = 5, 1, 2, 3, 5, 7, 10, 20, 50, 100 and eps = 
lo-l5 we checked relation (1.9). The output of I pa.pa 1 + qa.qa 1 - 1 ( is given in 
Table I. The procedure bessya was also tested in the neighborhood of x = 3. For 
x* = 3 f 2-46 we computed the numerical values of the expressions 

do = {Y&-) - Y&f)), 
4 = tya+1ce - Y,+1(x+)~. 

In Table II we give do , Q , the maximum number of terms (n) used in (2. I), and the 
starting index N for the Miller algorithm. 
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TABLE I 

TABLE II 

eps 5.0,, - 06 5.010 - 09 5.010 - 12 5.0,, - 14 

a 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

d0 5.21,, - 08 4.31, - 11 3.410 - 14 

dl 6.410 - 08 1.8,, - 11 3.6, - 14 

(n, N) (9,17) (11% 37) (13.64) 

d0 4.83.0 - 08 5.310 - 11 5.40 - 14 

dl 9.41,, - 08 4.91, - 11 2.2,, - 14 

(n, N) (9, 17) (11,36) (13,631 

d0 6.81, - 09 2.2,, - 11 2.110 - 14 

dl 2.31, - 08 l.l10 - 10 2.5,, - 14 

h NJ WA 15) (11,33) (13,59) 

d0 2.01, - 07 8.2,, - 12 3.410 - 14 

dl 9.91,, - 08 4.810 - 11 l.Q, - 14 

h N) (8,151 (11,331 (13,591 

d0 3.5,0 - 08 4.71, - 12 4.11, - 14 

dl 5.710 - 08 4.7,, - 11 0.010 + 00 

(n, N) (9, 17) (11,X9 (13,631 

d0 6.4, - 08 1.8,, - 11 3.21, - 14 

dl 9.510 - 08 5.5,, - 11 7.11, - 15 

h N) (9,171 (11,37) (13,W 

5.31, - 15 

5.31, - 15 

(14,87) 

l.Slo - 15 

1.31o - 14 

(14,86) 

8.9,, - 15 

2.31, - 14 

(14,f-w 

1.61, - 14 

2.410 - 14 

u4,w 

l.ll, - 14 

2.110 - 14 

U4,86) 

3.61,, - 15 

I.410 - 14 

(14,871 
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procedure bessya(a,x,eps,ya,yul); value a,x,eps; real a,x,eps,ya,yal; 
begin real b c de fg h p pi,q,r,s; ,,,39,,, integer n,na; Boolean ret, reu; 

pi: = 4 X arctan(1); na: = entier(a+S); ret: = a > .5; 
rev: = a < -.5; if rev v ret then a:= a-na; 
ifa = -Sthen 
beginp: = sqrt(2/pi/x); f: = p x sin(x); g: = -p x cos(x) end else 
if x < 3 then 
begin b:= x/2; d:= --In(b); e:= a x d; 

c: = if abs(a) < 1o- 15 then l/pi else a/sin(a x pi); 
s:= if abs(e) < 1o- 15 then 1 else sinh(e)/e; 
e:= exp(e); g:= recip gamma(a, p, q) x e; e:= (e + l/e)/2; 
f:=2xcx(pxe+qxsxd);e:=axa; 
p:= g X c; q:= l/g/pi; c:= a X pi/2; 
r: = if abs(c) < 1,,- 15 then 1 else sin(c)/c; r: = pi X c x r X r; 
c:= 1; d:= -b x b;ya:=f+ r x q;yal:=p; 
for n:= 1, n + 1 while 
abs(g/(l + abs(ya))) + abs(/z/(l + abs(ya1))) > eps do 
beginf:=(fxn+p+q)/(nxn-e);c:=cxd/n; 

p: .= p/(n - a); q: = q/(n + a); 
g:=c x(f+r xq);h:=c xp--n Xg; 
ya:=ya +g;ya1:= JJal +I2 

end; 
f:= -ya; g:= -yal/b 

end else 
begin b: = x -pi x (a + .5)/2; c: = cos(b); s: = sin(b); 

d: = sqrt(2/x/pi); 
besspqa(a,x,eps,p,q,b,h); 
f:= d x (p x s + q x c); g:= d x (h x s - b x c) 

end; 
if rev then 
begin x: = 2/x; na: = --na - 1; 

forn:=Ostepluntilnado 
begin/z:= x x (a-n) xf-gg;g:=f;f:=hend 

end else if ret then 
begin x: = 2/x; 

fern:= 1 step 1 untinado 
beginh:=x x (a+n) xg--f;f:=g;g:=Aend 

end; 
ya:=f; yal:= g 

end bessya; 
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procedure besspqa(a,x,eps,pa,qa,pal,qal); value a,x,eps; 
real a,x,eps,pa,qu,pfzl,qal; 

begin real b,c,d,e,f,g,p,pO,q,qO,r,s; integer n,na; Boolean rec,reo; 
rev;= a < -.5; if rev then a:= -a-l; 
ret:= a 3 .5; if ret then 
begin na:= entier(uf.5); a:= a - na end; 
if a = -.5 then 
beginpa:= pal:= 1; qu:= qal:= 0 end else 
begin c:= .25 - a x a; b:= x + x; p:= 4 x arctan(1); 

e: = (x x cos(u x p)/p/eps)f2; p:= 1; q: = -x; r: = s:= 1 + x x x; 
for n: = 2, n + 1 while r x n x n < e do 
begind:=(n-l+c/n)/s;p:=(2xn-pxd)/(n+l); 

q:=(-bfq xd)/(n+l);s:=p xp+q xq;r:=r xs 
end; 
f:=p:=pls;g:= q:= -q/s; 
forn:=n,n - I whilen >Odo 
begin r:= (n+l) x (2-p) - 2; s:= b + (n+l) x q; d:= (n - 1 + c/n)/ 

(r x r + s x s); p:= d x r; q:= d x s; e:= f; 
f:=px(e+l)-gxq;g:=qx(e+l)+pXg 

end; 
f:= 1 +f;d:=fxf+g xg; 
pa:= f/d; qa:= -g/d; d:= a + .5 -p; q:= q + x; 
pal: = (pa x q - qa x d)/x; 
qul:= (qa x q +pa x d)/x 

end; 
if ret then 
beginx:= 2/x; b:= (a + 1) x x; 

for n:= 1 step 1 until na do 
beginpO:=pa - qal x b; qO:= qa +pal x b; 

pa:=pal;pal:=pO; qa:= qal, qal:= q0; b:= b +x 
end 

end; 
if rev then 
beginpO:=pal;pal:=pa;pa:=pO; 

qo:= qal; qal:= qa; qu:= qo 
end 

end besspqa; 
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